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Abstract:

The emerging edge computing paradigm promises to deliver superior user experience and enable a wide

range of Internet of Things (IoT) applications. In this paper, we propose a new market-based framework

for efficiently allocating resources of heterogeneous capacity-limited edge nodes (EN) to multiple

competing services at the network edge. By properly pricing the geographically distributed ENs, the

proposed framework generates a market equilibrium (ME) solution that not only maximizes the edge

computing resource utilization but also allocates optimal resource bundles to the services given their

budget constraints. When the utility of a service is defined as the maximum revenue that the service can

achieve from its resource allotment, the equilibrium can be computed centrally by solving the Eisenberg-

Gale (EG) convex program. We further show that the equilibrium allocation is Pareto-optimal and

satisfies desired fairness properties including sharing incentive, proportionality, and envy-freeness. Also,

two distributed algorithms, which efficiently converge to an ME, are introduced. When each service aims

to maximize its net profit (i.e., revenue minus cost) instead of the revenue, we derive a novel convex

optimization problem and rigorously prove that its solution is exactly an ME. Extensive numerical results

are presented to validate the effectiveness of the proposed techniques.

Index Terms—Market equilibrium, Fisher market, fairness, algorithmic game theory, edge

computing, fog computing.

1 INTRODUCTION

The last decade has witnessed an explosion of

data traffic over the communication network

attributed to the rapidly growing cloud

computing and pervasive mobile devices. This

trend is expected to continue for the foreseeable

future with a whole new generation of

applications including 4K/8K UHD video,

tactile Internet, virtual/augmented reality

(VR/AR), and a variety of IoT applications [1].

As the cloud infrastructure and number of
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devices continue to expand at an accelerated rate,

a tremendous burden will be put on the network.

Hence, it is imperative for operators to develop

innovative solutions to meet the soaring traffic

demand and accommodate diverse requirements

of various services and use cases in future

networks. Thanks to the economy of scale and

supercomputing capability advantages, cloud

computing will likely continue to play a

prominent role in the future computing

landscape. However, cloud data centers (DC) are

often geographically distant from the end-user,

which induces enormous network traffic, along

with significant communication delay and jitter.

Therefore, despite the immense power, cloud

computing alone is facing growing limitations in

satisfying the stringent requirements in terms of

latency, reliability, security, mobility, and

localization of new systems and applications

(e.g., embedded artificial intelligence,

missioncritical communication, 5G wireless

systems) [1]. To this end, edge computing (EC)

[2], also known as fog computing (FC) [1], has

emerged as a novel computing paradigm that

complements the cloud and addresses many

shortcomings in the traditional cloud model. In

EC, storage, computing, control, and networking

resources are placed closer to end-users, things,

and sensors. The size of an EN is flexible

ranging from smartphones, smart access points

(AP), base stations (BS) to edge clouds [3]. For

example, a smartphone is the edge between

wearable devices and the cloud, a home gateway

is the edge between smart appliances and the

cloud, a telecom central office is the edge

between mobile devices and the core network.

By providing elastic resources and intelligence

at the edge, EC offers many remarkable

capabilities, such as local data processing and

analytics, distributed caching, location

awareness, resource pooling and scaling,

enhanced privacy and security, and reliable

connectivity. EC is also a key enabler for ultra-

reliable low-latency applications (e.g., AR,

autonomous driving). A myriad of benefits and

other use cases (e.g., offloading, caching,

advertising, healthcare, smart homes/grids/cities)

of EC can be found in [1]–[3]. Today, EC is still

in the developing stages and presents many new

challenges, such as network architecture design,

programming models and abstracts, IoT support,

service placement, resource provisioning and

management, security and privacy, incentive

design, and reliability and scalability of edge

devices [1]–[3]. In this paper, we focus on the

EC resource allocation problem. Unlike cloud

computing, where computational capacity of

large DCs is virtually unlimited and network

delay is high, EC is characterized by relatively

low network latency but considerable processing

delay due to the limited computing power of

ENs. Also, there are a massive number of

distributed computing nodes compared to a

small number of large DCs. Additionally, ENs

may come with different sizes (e.g., number of

computing units) and configurations (e.g.,
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computing speed) ranging from a smartphone to

an edge cloud with tens/hundreds of servers.

These nodes are dispersed in numerous locations

with varying network and service delay towards

end-users. On the other hand, different services

may have different requirements and properties.

Some services can only be handled by ENs

satisfying certain criteria. Furthermore, different

services may be given different priorities. While

every service not only wants to obtain as much

resource as possible but also prefers to be served

by its closest ENs with low response time, the

capacities of ENs are limited. Also, due to the

diverse preferences of the services towards the

ENs, some nodes can be under-demanded while

other are over-demanded. Thus, a fundamental

problem is: given a set of geographically

distributed heterogeneous ENs, how can we

efficiently allocate their limited computing

resources to competing services with different

desires and characteristics, considering service

priority and fairness? This work introduces a

novel market-based solution framework which

aims not only to maximize the resource

utilization of the ENs but also to make every

service happy with the allocation decision. The

basic idea behind our approach is to assign

different prices to resources of different ENs. In

particular, highly sought-after resources are

priced high while prices of under-demanded

resources are low. We assume that each service

has a certain budget for resource procurement.

The budget can be virtual or real money. Indeed,

budget is used to capture service

priority/differentiation. It can also be interpreted

as the market power of each service. Given the

resource prices, each service buys the favorite

resource bundle that it can afford. When all the

resources are fully allocated, the resulting prices

and allocation form a market equilibrium (ME).

If there is only one EN, an ME can be found

easily by adjusting the price gradually until

demand equals supply or locating the

intersection of the demand and supply curves.

However, when there are multiple

heterogeneous ENs and multiple services with

diverse objectives and different buying power,

the problem becomes challenging since the

services have more options to buy resources. We

consider two distinct market models in this work.

In the first model, the money does not have

intrinsic value to the services. Given resource

prices, each service aims to maximize its

revenue from the allocated resources, without

caring about how much it has to pay as long as

the total payment does not exceed its budget.

This model arises in many real-world scenarios.

For example, in 5G networks, the Mobile Edge

Computing (MEC) servers of a Telco are shared

among different network slices, each of which

runs a separate service (e.g., voice, video

streaming, AR/VR, connected vehicles, sensing)

and serves a group of customers who pay for the

service. The Telco can allot different budgets to

the slices depending on their importance and/or

potential revenue generation (e.g., the total fee
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paid by the users/subscribers of each slice).

Similarly, an application provider (e.g., Uber,

Pokemon Go) or a sensor network may own a

number of ENs in a city and need to allocate the

edge resources to handle requests of different

groups of users/sensors. The budget can be

decided based on criteria such as the populations

of users/sensors in different areas and/or

payment levels (subscription fees) of different

groups of users. Another example is that a

university (or other organizations) can grant

different virtual budgets to different departments

or research labs so that they can fairly share the

edge servers on the campus. The first model may

also emerge in the setting of cloud federation at

the edge where several companies (i.e., services)

pool their resources together and each of them

contributes a fixed portion of resource of every

EN. Here, the budgets are proportional to the

initial contributions of the companies. Instead of

resource pooling, these companies may agree

upfront on their individual budgets, and then

buy/rent a given set of ENs together. In these

scenarios, it is important to consider both

fairness and efficiency. Thus, conventional

schemes such as social welfare maximization,

maxmin fairness, and auction models may not be

suitable. In particular, a welfare maximization

allocation often gives most of the resources to

users who have high marginal utilities while

users with low marginal utilities receive a very

small amount of resources, even nothing.

Similarly, in auction models, the set of losers are

not allocated any resource. Hence, these

solutions can be unfair to some users. On the

other hands, a maxmin fairness solution often

allocates too many resources to users with low

marginal utilities, hence, it may not be efficient.

To strive the balance between fairness and

efficiency, we advocate the General Equilibrium

Theory [4], with a specific focus on the Fisher

market model [5], as an effective solution

concept for this problem. Specifically, the first

model can be cast as a Fisher market in which

services act as buyers and ENs act as different

goods in the market. For the linear additive

utility function as considered in this work, given

resource prices, a service may have an infinite

set of optimal resource bundles, which renders

difficulty in designing distributed algorithms.

We suggest several methods to overcome this

challenge. Moreover, we show that the obtained

allocation is Pareto-optimal, which means there

is no other allocation that would make some

service better off without making someone else

worse off [6]. In other words, there is no strictly

“better” allocation. Thus, a Paretooptimal

allocation is efficient. We furthermore link the

ME to the fair division literature [7] and prove

that the allocation satisfies remarkable fairness

properties including envy-freeness, sharing-

incentive, and proportionality, which provides

strong incentives for the services to participate

in the proposed scheme. Indeed, these properties

were rarely investigated explicitly in the ME

literature. Envy-freeness means that every
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service prefers its allocation to the allocation of

any other service. In an envy-free allocation,

every service feels that its share is at least as

good as the share of any other service, and thus

no service feels envy. Sharing-incentive is

another well-known fairness concept. It ensures

that services get better utilities than what they

would get in the proportional sharing scheme

that gives each service an amount of resource

from every EN proportional to its budget. Note

that proportional sharing is an intuitive way to

share resources fairly in terms of quantity. For

the federation setting, sharing-incentive implies

that every service gets better off by pooling their

resources (or money) together. Finally, it is

natural for a service to expect to obtain a utility

of at least b/B of the maximum utility that it can

achieve by getting all the resources, where b is

the payment of the service and B is the total

payment of all the services. The proportionality

property guarantees that the utility of every

service at the ME is at least proportional to its

payment/budget. Thus, it makes every service

feel fair in terms of the achieved utility. In the

second model, the money does have intrinsic

value to the services. The services not only want

to maximize their revenues but also want to

minimize their payments. In particular, each

service aims to maximize the sum of its

remaining budget (i.e., surplus) and the revenue

from the procured resources, which is equivalent

to maximizing the net profit (i.e., revenue minus

cost). This model is prevalent in practice. For

example, several service providers (SP), each of

which has a certain budget, may compete for the

available resources of an edge infrastructure

provider (e.g., a Telco, a broker). The SPs only

pay for their allocated resources and can take

back their remaining budgets. Obviously, a SP

will only buy a computing unit if the potential

gain from that unit outweighs the cost. It is

natural for the SPs to maximize their net profits

in this case. The classical Fisher market model

does not capture this setting since the utility

functions of the services depend on the resource

prices. It is worth mentioning that,

conventionally, the optimal dual variables

associated with the supply demand constraints

(i.e., the capacity constraints of the ENs) are

often interpreted as the resource prices [32] and

common approaches such as network utility

maximization (NUM) [33] can be used to

compute an ME. However, these approaches do

not work for our models that take budget into

consideration. Indeed, the main difficulty in

computing an ME in both models stems from the

budget constraints which contain both the dual

variables (i.e., prices) and primal variables (i.e.,

allocation). In the second model, the prices also

appear in the objective functions of the services.

Therefore, the ME computation problem

becomes challenging. Note that the pair of

equilibrium prices and equilibrium allocation

has to not only clear the market but also

simultaneously maximize the utility of every

service (as elaborated in Section 4). Fortunately,
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for a wide class of utility functions, the ME in

the first model can be found by solving a simple

Eisenberg-Gale (EG) convex program [8]–[10].

However, the EG program does not capture the

ME in the second model. Interesting, by reverse-

engineering the structure of the primal and dual

programs in the first model, we can rigorously

construct a novel convex optimization problem

whose solution is an ME of the second model.

This technique can also be used to find the ME

that considers other practical constraints (e.g.,

operation cost of the edge servers). Our main

contributions include:

• Modeling. We formulate a new market-based

EC resource allocation framework and advocate

the General Equilibrium theory as an effective

solution method for the proposed problem. •

Centralized solution. The unique ME in the first

model can be determined by the EG program.

We also prove some salient fairness features of

the ME. • Decentralized algorithms. We

introduce several distributed algorithms that

efficiently overcome the difficulty raised by the

non-unique demand functions of the services

and converge to the ME. • Extended Fisher

market. We systematically derive a new convex

optimization problem whose optimal solution is

an exact ME in the extended Fisher market

model where buyers value the money. •

Performance Evaluation. Simulations are

conducted to illustrate the efficacy of the

proposed techniques.

II. RELATEDWORK

The potential benefits and many technical

aspects of EC have been studied extensively in

the recent literature. First, the hybrid edge/fog-

cloud system can be leveraged to improve the

performance of emerging applications such as

cloud gaming and healthcare [11], [12]. A.

Mukherjee et. al. [13] present a power and

latency aware cloudlet selection strategy for

computation offloading in a multi-cloudlet

environment. The tradeoff between power

consumption and service delay in a fog-cloud

system is investigated in [14] where the authors

formulate a workload allocation problem to

minimize the system energy cost under latency

constraints. A latency aware workload

offloading scheme in a cloudlet network is

formulated in [15] to minimize the average

response time for mobile users. In [16], M. Jia et.

al. explore the joint optimization of cloudlet

placement and user-to-cloudlet assignment to

minimize service latency while considering load

balancing. A unified service placement and

request dispatching framework is presented in

[17] to evaluate the tradeoffs between the user

access delay and service cost. Stackelberg game

and matching theory are employed in [18] to

study the joint optimization among data service

operators (DSO), data service subscribers (DSS),

and a set of ENs in a threetier edge network

where the DSOs can obtain computing resources

from different ENs to serve their DSSs. Another

major line of research has recently focused on
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the joint allocation of communication and

computational 4 resources for task offloading in

the Mobile Edge Computing (MEC)

environment [19]–[21]. MEC allows mobile

devices to offload computational tasks to

resourcerich servers located near or at cellular

BSs, which could potentially reduce the devices’

energy consumption and task execution delay.

However, these benefits could be jeopardized if

multiple users offload their tasks to MEC servers

simultaneously. In this case, a user may not only

suffer severe interference but also receive a very

small amount of EC resource, which would

consequently reduce data rate, increase

transmission delay, and cause high task

execution time on the servers. Hence, offloading

decision, allocation and scheduling of radio

resources, and computational resources should

be jointly considered in an integrated framework

III. SYSTEMMODEL

An EC environment is depicted in Fig. ??.

Besides local execution and remote processing

at cloud DCs, data and requests from end-

devices (e.g., smartphones, set-top-boxes,

sensors) can be handled by the EC platform.

Note that some data and computing need to be

done in the local to keep data privacy. A request

typically first goes to a Point of Aggregation

(PoA) (e.g., switches/routers, BSs, APs), then it

will be routed to an EN for processing. Indeed,

enterprises, factories, organizations (e.g.,

hospitals, universities, museums), commercial

buildings (shopping malls, hotels, airports), and

other third parties (e.g., sensor networks) can

also outsource their services and computation to

the intelligent edge network. Furthermore,

service/content/application providers like

Google, Netflix, and Facebook can proactively

install their content and services onto ENs to

serve better their customers. In the EC

environment, various sources (e.g., smartphones,

PCs, servers in a lab, underutilized

small/medium data centers in

schools/hospitals/malls/enterprises, BSs,

telecom central offices) can act as ENs. We

consider a system encompassing various

services and a set of geographically distributed

ENs with different configurations and limited

computing capacities. Each service has a budget

for resource procurement and wants to 5 offload

as many requests as possible to the edge network.

The value of an EN to a service is measured in

terms of the maximum revenue that it can

generate by using the EN’s resource. An EN

may have different values to different services.

Since some ENs (e.g., ones with powerful

servers) can be over-demanded while some

others are underdemanded, it is desirable to

harmonize the interests of the services so that

each service is happy with its allotment while

ensuring high resource utilization. An intuitive

solution is to assign prices to ENs and let each

service choose its favorite resource bundle. We

assume that there is a platform lying between the

services and the ENs. Based on the information
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collected from the ENs (e.g., computing capacity)

and the services (e.g., budgets, preferences), the

platform computes an ME solution including

resource prices and allocation, which not only

maximizes the satisfaction of every service but

also fully allocates the ENs’ resources. In the

first model, each service seeks solely to

maximize its revenue under the budget

constraint, without concerning about the money

surplus after purchasing resources. This can be

the case where the services and ENs belong to

the same entity, and each service is assigned a

virtual budget representing the service’s priority.

For instance, a Telco can give different budgets

to different network slices, each of which runs a

service (e.g., voice, video streaming, AR/VR,

connected vehicles). In the second model, the

remaining money does have intrinsic value to

the services. In this case, each service aims to

maximize the sum of its remaining budget and

the revenue from the procured resources. For

example, this can be the case where services and

ENs are owned by different entities, and each SP

(e.g., Google, Facebook, enterprises) has a

certain budget for leasing resources from an

infrastructure provider (e.g., a Telco). For

simplicity, we assume that the values of ENs to

the services are fixed. Our model can be

extended to capture time-varying valuation in a

multi-period model by considering each pair of

an EN and a time slot as an independent EN

IV CONCLUSION

In this work, we consider the resource

allocation for an EC system which consists

geographically distributed heterogeneous ENs

with different configurations and a collection of

services with different desires and buying power.

Our main contribution is to suggest the famous

concept of General Equilibrium in Economics as

an effective solution for the underlying EC

resource allocation problem. The proposed

solution produces an ME that not only Pareto-

efficient but also possesses many attractive

fairness properties. The potential of this

approach are well beyond EC applications. For

example, it can be used to share storage space in

edge caches to different service providers. We

can also utilize the proposed framework to share

resources (e.g., communication, wireless

channels) to different users or groups of users

(instead of services and service providers).

Furthermore, the proposed model can extend to

the multi-resource scenario where each buyer

needs a combination of different resource types

(e.g., storage, bandwidth, and compute) to run

its service. We will formally report these cases

(e.g., network slicing, NFV chaining

applications) in our future work. The proposed

framework could serve as a first step to

understand new business models and unlock the

enormous potential of the future EC ecosystem.

There are several future research directions. For

example, we will investigate the ME concept in

the case when several edge networks cooperate

with each other to form an edge/fog federation.
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Investigating the impacts of the strategic

behavior on the efficiency of the ME is another

interesting topic. Note that N. Chen et. al. have

shown that the gains of buyers for strategic

behavior in Fisher markets are small.

Additionally, in this work, we implicitly assume

the demand of every service is unlimited. It can

be verified that we can add the maximum

number of requests constraints to the EG

program to capture the limited demand case, and

the solution of this modified problem is indeed

an ME. However, although the optimal utilities

of the services in this case are unique, there can

have infinite number of equilibrium prices. We

are investigating this problem in our ongoing

work. Also, integrating the operation cost of

ENs into the proposed ME framework is a

subject of our future work. Finally, how to

compute market equilibria with more complex

utility functions that capture practical aspects

such as task moving expenses among ENs and

data privacy is an interesting future research

direction. It is also interesting to test the

performance of the proposed approach on real

datasets of an EC system when EC is widely

deployed.
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